Brand Name: | Rexroth |
Model Number: | AA2FM80/61W-VUDN520 (R902137579) |
MOQ: | 2 |
Price: | $400 |
Payment Terms: | T/T, T/T |
The Bosch Rexroth AA2FM80/61W-VUDN520 (R902137579) is a high-pressure motor characterized by its bent-axis design, which ensures efficient operation across a range of applications. This all-purpose motor is suitable for both open and closed circuit systems, making it versatile for various hydraulic requirements. With a sizeable nominal pressure capacity of up to 400 bar and a maximum pressure limit of 450 bar, the AA2FM80/61W-VUDN520 delivers robust performance and reliability. The motor boasts a large selection of nominal sizes, enabling precise customization for specific applications and ensuring optimal performance. It features an impressive high power density and maintains very high total efficiency, including high starting efficiency which is critical for operations requiring immediate response from standstill. Equipped with working ports that come in SAE flange or thread options, this motor caters to the requirements of the US market with its SAE version. For added functionality, it can come optionally equipped with an integrated pressure relief valve to protect the hydraulic system from excessive pressure. Additionally, there are options to mount additional valves such as counterbalance valves (BV/BVE), flushing, and boost pressure valves if needed by the application. The Bosch Rexroth AA2FM80/61W-VUDN520's design not only provides superior performance but also ensures durability and longevity even in demanding conditions. Its advanced engineering is indicative of Bosch Rexroth’s commitment to providing high-quality hydraulic components that meet the needs of various sectors requiring precision fluid power solutions.
Size | 10 | 12 | 16 | 23 | 28 | 32 | 107 | 125 | 160 | 180 | 250 | |||
Displacement geometric, per revolution |
Vg | cm³ | 10.3 | 12 | 16 | 22.9 | 28.1 | 32 | 106.7 | 125 | 160.4 | 180 | 250 | |
Nominal pressure | pnom | bar | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 350 | |
Maximum pressure | pmax | bar | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 400 | |
Maximum speed | nnom 1) | rpm | 8000 | 8000 | 8000 | 6300 | 6300 | 6300 | 4000 | 4000 | 3600 | 3600 | 2700 | |
nmax 2) | rpm | 8800 | 8800 | 8800 | 6900 | 6900 | 6900 | 4400 | 4400 | 4000 | 4000 | |||
Inlet flow 3) | at nnom | qV | l/min | 82 | 96 | 128 | 144 | 177 | 202 | 427 | 500 | 577 | 648 | 675 |
Torque 4) | at pnom | M | Nm | 66 | 76 | 102 | 146 | 179 | 204 | 679 | 796 | 1021 | 1146 | 1393 |
Rotary stiffness | c | kNm/rad | 0.92 | 1.25 | 1.59 | 2.56 | 2.93 | 3.12 | 11.2 | 11.9 | 17.4 | 18.2 | 73.1 | |
Moment of inertia for rotary group | JTW | kg·m² | 0.0004 | 0.0004 | 0.0004 | 0.0012 | 0.0012 | 0.0012 | 0.0116 | 0.0116 | 0.022 | 0.022 | 0.061 | |
Maximum angular acceleration | ɑ | rad/s² | 5000 | 5000 | 5000 | 6500 | 6500 | 6500 | 4500 | 4500 | 3500 | 3500 | 10000 | |
Case volume | V | l | 0.17 | 0.17 | 0.17 | 0.2 | 0.2 | 0.2 | 0.8 | 0.8 | 1.1 | 1.1 | 2.5 | |
Weight (approx.) | m | kg | 5.4 | 5.4 | 5.4 | 9.5 | 9.5 | 9.5 | 32 | 32 | 45 | 45 | 73 |
1) | These values are valid at: - for the optimum viscosity range from vopt = 36 to 16 mm2/s - with hydraulic fluid based on mineral oils |
2) | Intermittent maximum speed: overspeed for unload and overhauling processest, t < 5 s and Δp < 150 bar |
3) | Restriction of input flow with counterbalance valve |
4) | Torque without radial force, with radial force see table "Permissible radial and axial forces of the drive shafts |
Viscosity | Shaft seal |
Temperature1) | Comment | |
Cold start | νmax ≤ 1600 mm²/s | NBR2) | ϑSt ≥ -40 °C | t ≤ 3 min, without load (p ≤ 50 bar), n ≤ 1000 rpm, permissible temperature difference between axial piston unit and hydraulic fluid max. 25 K |
FKM | ϑSt ≥ -25 °C | |||
Warm-up phase | ν = 400 … 1600 mm²/s | t ≤ 15 min, p ≤ 0.7 • pnom and n ≤ 0.5 • nnom | ||
Continuous operation | ν = 10 … 400 mm²/s3) | NBR2) | ϑ ≤ +78 °C | measured at port T |
FKM | ϑ ≤ +103 °C | |||
νopt = 16 … 36 mm²/s | range of optimum operating viscosity and efficiency | |||
Short-term operation | νmin = 7 … 10 mm²/s | NBR2) | ϑ ≤ +78 °C |
t ≤ 3 min, p ≤ 0.3 • pnom measured at port T |
FKM | ϑ ≤ +103 °C |
1) | If the specified temperatures cannot be maintained due to extreme operating parameters, please contact us. |
2) | Special version, please contact us. |
3) | Equates e.g. with the VG 46 a temperature range of +5 °C to +85 °C (see selection diagram) |
Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.
A cleanliness level of at least 20/18/15 is to be maintained according to ISO 4406.
At a hydraulic fluid viscosity of less than 10 mm²/s (e.g. due to high temperatures in short-term operation) at the drain port, a cleanliness level of at least 19/17/14 according to ISO 4406 is required.
For example, the viscosity is 10 mm²/s at:
HLP 32 a temperature of 73°C HLP 46 a temperature of 85°CPressure at working port A or B (high-pressure side) | Definition | ||
Nominal pressure | pnom | see table of values | The nominal pressure corresponds to the maximum design pressure. |
Maximum pressure | pmax | see table of values | The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period. |
Single operating period | 10 s | ||
Total operating period | 300 h | ||
Minimum pressure | pHP min | 25 bar | Minimum pressure on high-pressure side (port A or B) required to prevent damage to the axial piston unit. |
Minimum pressure at inlet (pump operating mode) | pE min | see diagram | To prevent damage to the axial piston motor in pump mode (change of high-pressure side with unchanged direction of rotation, e.g. when braking),a minimum pressure must be guaranteed at the working port (inlet). The minimum pressure depends on the rotational speed and displacement of the axial piston unit. |
Total pressure | pSu | 700 bar | The summation pressure is the sum of the pressures at both work ports (A and B). |
Rate of pressure change | Definition | ||
with integrated pressure relief valve | RA max | 9000 bar/s | Maximum permissible rate of pressure build-up and reduction during a pressure change over the entire pressure range. |
without pressure relief valve | RA max | 16000 bar/s | |
Case pressure at port T | Definition | ||
Continuous differential pressure | ΔpT cont | 2 bar | Maximum averaged differential pressure at the shaft seal (case to ambient) |
Pressure peaks | pT peak | 10 bar | t < 0.1 s |
Brand Name: | Rexroth |
Model Number: | AA2FM80/61W-VUDN520 (R902137579) |
MOQ: | 2 |
Price: | $400 |
Payment Terms: | T/T, T/T |
The Bosch Rexroth AA2FM80/61W-VUDN520 (R902137579) is a high-pressure motor characterized by its bent-axis design, which ensures efficient operation across a range of applications. This all-purpose motor is suitable for both open and closed circuit systems, making it versatile for various hydraulic requirements. With a sizeable nominal pressure capacity of up to 400 bar and a maximum pressure limit of 450 bar, the AA2FM80/61W-VUDN520 delivers robust performance and reliability. The motor boasts a large selection of nominal sizes, enabling precise customization for specific applications and ensuring optimal performance. It features an impressive high power density and maintains very high total efficiency, including high starting efficiency which is critical for operations requiring immediate response from standstill. Equipped with working ports that come in SAE flange or thread options, this motor caters to the requirements of the US market with its SAE version. For added functionality, it can come optionally equipped with an integrated pressure relief valve to protect the hydraulic system from excessive pressure. Additionally, there are options to mount additional valves such as counterbalance valves (BV/BVE), flushing, and boost pressure valves if needed by the application. The Bosch Rexroth AA2FM80/61W-VUDN520's design not only provides superior performance but also ensures durability and longevity even in demanding conditions. Its advanced engineering is indicative of Bosch Rexroth’s commitment to providing high-quality hydraulic components that meet the needs of various sectors requiring precision fluid power solutions.
Size | 10 | 12 | 16 | 23 | 28 | 32 | 107 | 125 | 160 | 180 | 250 | |||
Displacement geometric, per revolution |
Vg | cm³ | 10.3 | 12 | 16 | 22.9 | 28.1 | 32 | 106.7 | 125 | 160.4 | 180 | 250 | |
Nominal pressure | pnom | bar | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 350 | |
Maximum pressure | pmax | bar | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 400 | |
Maximum speed | nnom 1) | rpm | 8000 | 8000 | 8000 | 6300 | 6300 | 6300 | 4000 | 4000 | 3600 | 3600 | 2700 | |
nmax 2) | rpm | 8800 | 8800 | 8800 | 6900 | 6900 | 6900 | 4400 | 4400 | 4000 | 4000 | |||
Inlet flow 3) | at nnom | qV | l/min | 82 | 96 | 128 | 144 | 177 | 202 | 427 | 500 | 577 | 648 | 675 |
Torque 4) | at pnom | M | Nm | 66 | 76 | 102 | 146 | 179 | 204 | 679 | 796 | 1021 | 1146 | 1393 |
Rotary stiffness | c | kNm/rad | 0.92 | 1.25 | 1.59 | 2.56 | 2.93 | 3.12 | 11.2 | 11.9 | 17.4 | 18.2 | 73.1 | |
Moment of inertia for rotary group | JTW | kg·m² | 0.0004 | 0.0004 | 0.0004 | 0.0012 | 0.0012 | 0.0012 | 0.0116 | 0.0116 | 0.022 | 0.022 | 0.061 | |
Maximum angular acceleration | ɑ | rad/s² | 5000 | 5000 | 5000 | 6500 | 6500 | 6500 | 4500 | 4500 | 3500 | 3500 | 10000 | |
Case volume | V | l | 0.17 | 0.17 | 0.17 | 0.2 | 0.2 | 0.2 | 0.8 | 0.8 | 1.1 | 1.1 | 2.5 | |
Weight (approx.) | m | kg | 5.4 | 5.4 | 5.4 | 9.5 | 9.5 | 9.5 | 32 | 32 | 45 | 45 | 73 |
1) | These values are valid at: - for the optimum viscosity range from vopt = 36 to 16 mm2/s - with hydraulic fluid based on mineral oils |
2) | Intermittent maximum speed: overspeed for unload and overhauling processest, t < 5 s and Δp < 150 bar |
3) | Restriction of input flow with counterbalance valve |
4) | Torque without radial force, with radial force see table "Permissible radial and axial forces of the drive shafts |
Viscosity | Shaft seal |
Temperature1) | Comment | |
Cold start | νmax ≤ 1600 mm²/s | NBR2) | ϑSt ≥ -40 °C | t ≤ 3 min, without load (p ≤ 50 bar), n ≤ 1000 rpm, permissible temperature difference between axial piston unit and hydraulic fluid max. 25 K |
FKM | ϑSt ≥ -25 °C | |||
Warm-up phase | ν = 400 … 1600 mm²/s | t ≤ 15 min, p ≤ 0.7 • pnom and n ≤ 0.5 • nnom | ||
Continuous operation | ν = 10 … 400 mm²/s3) | NBR2) | ϑ ≤ +78 °C | measured at port T |
FKM | ϑ ≤ +103 °C | |||
νopt = 16 … 36 mm²/s | range of optimum operating viscosity and efficiency | |||
Short-term operation | νmin = 7 … 10 mm²/s | NBR2) | ϑ ≤ +78 °C |
t ≤ 3 min, p ≤ 0.3 • pnom measured at port T |
FKM | ϑ ≤ +103 °C |
1) | If the specified temperatures cannot be maintained due to extreme operating parameters, please contact us. |
2) | Special version, please contact us. |
3) | Equates e.g. with the VG 46 a temperature range of +5 °C to +85 °C (see selection diagram) |
Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.
A cleanliness level of at least 20/18/15 is to be maintained according to ISO 4406.
At a hydraulic fluid viscosity of less than 10 mm²/s (e.g. due to high temperatures in short-term operation) at the drain port, a cleanliness level of at least 19/17/14 according to ISO 4406 is required.
For example, the viscosity is 10 mm²/s at:
HLP 32 a temperature of 73°C HLP 46 a temperature of 85°CPressure at working port A or B (high-pressure side) | Definition | ||
Nominal pressure | pnom | see table of values | The nominal pressure corresponds to the maximum design pressure. |
Maximum pressure | pmax | see table of values | The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period. |
Single operating period | 10 s | ||
Total operating period | 300 h | ||
Minimum pressure | pHP min | 25 bar | Minimum pressure on high-pressure side (port A or B) required to prevent damage to the axial piston unit. |
Minimum pressure at inlet (pump operating mode) | pE min | see diagram | To prevent damage to the axial piston motor in pump mode (change of high-pressure side with unchanged direction of rotation, e.g. when braking),a minimum pressure must be guaranteed at the working port (inlet). The minimum pressure depends on the rotational speed and displacement of the axial piston unit. |
Total pressure | pSu | 700 bar | The summation pressure is the sum of the pressures at both work ports (A and B). |
Rate of pressure change | Definition | ||
with integrated pressure relief valve | RA max | 9000 bar/s | Maximum permissible rate of pressure build-up and reduction during a pressure change over the entire pressure range. |
without pressure relief valve | RA max | 16000 bar/s | |
Case pressure at port T | Definition | ||
Continuous differential pressure | ΔpT cont | 2 bar | Maximum averaged differential pressure at the shaft seal (case to ambient) |
Pressure peaks | pT peak | 10 bar | t < 0.1 s |